Powder metallurgy

One step manufacturing process of complex parts by SPS sintering

Current methods for manufacturing complex parts are not fully satisfactory: loss of material, length of process, materials with imperfect performances... Spark Plasma Sintering (SPS) is a rapid densification technique which allows to get materials exhibiting higher performances. Combining this technology with a method for producing complex shapes is today possible.

DESCRIPTION*

- Manufacturing process of complex parts to nearest dimensions, so called « near net shape »:
 - Use of a sacrificial material (possibly of different and less expensive kind)
 - Creation of mobile interfaces
 - Evolution of the mobile interface during the densification: support the formation of the part to its final dimensions
- One step process
- Manufacture of several parts in a single matrix
- Fast production of high performances parts

≣ TECHNICAL SPECIFICATIONS

Material for final part	 Unconstrained choice (metals and alloys, ceramics)
Material for mobile interface	 Non-reactive to sintering under implementation conditions Non-reactive to the material to be sintered
Sacrificial material	 Requires sintering parameters near those of the final material Not limited formatting method (conventional sintering, additive fab, SPS)
Final part geometry	

TOULOUSE TECH TRANSFER

COMPETITIVE ADVANTAGES

- Complex geometry
- Homogeneity of Density
 & Microstructure
- Near net shape
- Reduced loss of material
- Reduced manufacturing cost
- Manufacturing simplification & speeding up
- Parts with high mechanical performances

APPLICATIONS

- Turbine turbocharger
- Turbine blade
- Piston pin
- Valve
- Bearing ball
- Watchcase
- Dental implant
- Biomedical prosthesis

○ INTELLECTUAL PROPERTY

Patent

DEVELOPMENT STAGE

Technology validated at lab level

1 2 3 4 5 6 7 8 9

LABORATORY

Team Nanocomposites
 and Carbon Nanotubes

CONTACT

T. +33 (0) 5 62 25 50 60 aet@toulouse-tech-transfer.com www.toulouse-tech-transfer.com

* Technology requiring license rights.

Photo: CIRIMAT/TTT. Non contractual document. All rights reserved. April 2016.