Strategic Considerations for Managing a Nanotechnology Patent Portfolio

Sarah Korman, Ph.D., J.D.

26 April 2016
Presentation Agenda

- Nanotechnology overview
- What are the key considerations in managing a global patent portfolio?
- Patents as strategic business tools
- Nanotechnology trade secrets
- How does the patenting of nanotechnology inventions differ from other fields?
- IP landscape for nanotechnology-based inventions
- Nanotechnology licensing agreements
Nanotechnology

- Nanotechnology is at the forefront of technology innovation across multiple disciplines, with the common scheme being scale.

- “Nanophase” is a special state of subdivision implying that particles or atomic clusters have average dimensions smaller than approximately 100 nm (100x10^{-9} m)

Cascade Blue/SiO$_2$ Nanoparticle (R=4, H=100, X=1)
Nanotechnology
Nano-Enabled Drug Delivery Technologies

<table>
<thead>
<tr>
<th>Dendrimers</th>
<th>Liposomes</th>
<th>Organically-Modified Ceramic Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fullerenes</td>
<td>Polymeric Micelles</td>
<td>Iron Oxide Nanoparticles (Hyperthermic)</td>
</tr>
<tr>
<td>Carbon nanotubes</td>
<td>Biodegradable Polymeric Nanoparticles</td>
<td>Nanoemulsions</td>
</tr>
<tr>
<td>Metallic Nanoparticles</td>
<td>Biodegradable Ceramic Nanoparticles</td>
<td>Nanocrystals</td>
</tr>
<tr>
<td>Inorganic Nanoparticles</td>
<td>Biodegradable Metallic Nanoparticles</td>
<td>Viral-Based Nanoparticles</td>
</tr>
<tr>
<td>NanoComposite Particles</td>
<td>Nanospheres (Core/shell)</td>
<td>Unimolecular Polymeric Drugs</td>
</tr>
<tr>
<td>Nanoshells</td>
<td>Nanocages (Porous Nanosphere)</td>
<td>Solid Lipid Nanoparticles</td>
</tr>
<tr>
<td>Nanowires</td>
<td>Non carbon nanotubes</td>
<td>Layered Double Hydroxide NPs</td>
</tr>
<tr>
<td>Nanodisks</td>
<td>Cyclic peptides</td>
<td>Quantum Dots</td>
</tr>
<tr>
<td>Hydrogel-Based Nanoparticles</td>
<td>Polymersomes</td>
<td>Nanojackets</td>
</tr>
<tr>
<td>Ferrofluids</td>
<td>Dynamic platform “nanosome”</td>
<td>Polymer Nanogels</td>
</tr>
<tr>
<td>Polymer Conjugates</td>
<td>Nanoporous/Mesoporous Structures</td>
<td>Composite Biomaterials</td>
</tr>
<tr>
<td>PEGylation</td>
<td>Genetic-Materials Based Origami</td>
<td>Stem Cell Delivery Platforms</td>
</tr>
</tbody>
</table>

www.EUbusinessinJapan.eu

EU-Japan Centre for Industrial Cooperation

日欧産業協力センター
Nano-Enabled Therapeutics & Medical Technologies

Dendrimer
Block Copolymers
Nanojacket
Polymeric Micelle
Gold Nanoshell
Quantum Dots

www.EUbusinessinJapan.eu
Global Patent Protection

Development of a global patent strategy is critical to the commercialization of products and success of nanotechnology-based businesses

- Development of an effective global patent strategy requires basic understanding of:
 - Products/services
 - Relevant markets
 - Protection mechanisms available in relevant markets
 - National level
 - International level
 - Policing and enforcement of IP worldwide
Patents as Strategic Business Tools

- Patents = key business assets
 - Weak patent position can prevent financing
 - Weak patent position can prevent acquisition
 - Weak patent position can have a negative impact on valuation

- A robust patent portfolio is based upon and supports business strategy. At a minimum, the portfolio:
 - Covers key products/services
 - Creates barriers to entry
 - Provides ammunition against competitors
Defensive Patent Portfolio Strategies

- Strengthening Patent Protection:
 - Strategically file for patents in key markets
 - Refine claim language
 - Make it easy to determine infringement
 - Fill in gaps in claim coverage
 - Layer protection (e.g., genus, species claims)
 - Review claims with inventors and consider design around possibilities
 - Consider alternative claim-drafting strategies
 - Consider in-licensing/acquisition of supplementing IP
Offensive Patent Portfolio Strategies

- An understanding of competitive landscape is key
 - Continuous monitoring efforts
 - FTO, validity opinions

- Blocking competition
 - New patent filings (anticipate competition)
 - Old patent filings/new claims (mining existing disclosures)

- Complementing the portfolio of a potential acquirer
 - May differentiate during acquisition
 - May equalize valuation leverage
Nanotechnology
Trade Secrets

- For many nanotechnology inventions, reverse engineering via simple analysis of product structure is difficult
 - invention best protected as trade secret

- A **trade secret** is a formula, practice, process, design, instrument, or compilation of information that is not generally known or reasonably ascertainable by which a business can obtain an economic advantage over competitors
 - Trade secret protection requires continuous diligence;
 once the technology is revealed it is no longer protected

- Important IP management and licensing strategy:
 - exploit overlap between patents and trade secrets
How Does the Patenting of Nanotechnology Differ from Other Fields?

- Use of overly-broad or unspecific terminology in nanotechnology applications may result in rejection of claims for lack of written description or enablement
 - When possible, well-known terms of art should be used to describe invention
 - Ambiguous or unclear terms should be clearly defined and consistently used in the specification
 - Characterization techniques (e.g., atomic force microscopy (AFM), powder X-Ray diffraction (PXRD), scanning electron microscopy (SEM), particle size analyzers, zeta potential measurements) and sample preparation should be clearly described
How Does the Patenting of Nanotechnology Differ from Other Fields?

- As many nanotechnology inventions already exist at the macroscale, certain claims to nanotechnology inventions could be deemed anticipated by their larger-scale counterparts
 - When drafting claims of a nanotechnology patent application, the improvement offered by the invention should be emphasized
- A mere decrease in size to the nanoscale may be deemed as inherent or obvious
 - Where the invention is not merely a reduction in size, but rather a solution of a new problem, the claims should focus on the solution
Strategies for Building a Nanotechnology Patent Portfolio

- Use recognized language in claims and specification
- Complete listing of prior art should be submitted during prosecution
- Utilize the interdisciplinary aspect of the invention to your advantage
- File patent applications directed to specific industries and fields of use
- Pursue patents with commercial focus/applicability
- Grow from a quality and quantity perspective
IP Landscape for Nanotechnology-Based Inventions

- Broad overlapping patent rights granted to nanotechnology-based inventions have resulted in a **"patent thicket"**

- A **"patent thicket"** is a situation where unreasonable breadth of patent claims of issued patents increases the potential for patent litigation and makes commercialization difficult or impossible for a new entrant in a particular business sector
 - Carbon nanotubes
 - Dendrimers
 - Quantum Dots

- Many fear that the patent thicket will hamper research and innovation in nanotechnology
Maneuvering through the Nanotechnology Patent Thicket

- **Cross-licensing**
 - Parties license patent rights among themselves with promise not to sue one another
 - Viable strategy for late-comers looking to enter saturated nanotechnology field

- **Patent Pooling**
 - Parties assemble overlapping patent rights into single agreement, with each party taking exclusive or non-exclusive rights to a particular field of use covered by combined patents
 - Risk that parties will overvalue own contributions
Nanotechnology
Patent Pooling Strategies

- All parties grant non-exclusive licenses to the pool, e.g., the licensors are free to license their patent(s) outside of the patent pool

- Independent patent expert evaluates which patents are essential in formation of the patent pool and/or divides royalties the pool receives

- Royalty rates distributed based on an formula

- Examine formation of the pool to ensure that it has the smallest possible chance of violating antitrust regulations
Nanotechnology Licensing Agreements

- Nanotechnology-based inventions often present unique technological issues relevant to licensing considerations:
 - Variance in quality and nature of invention
 - Difficulties in reverse engineering
 - Difficulties in up-scaling
 - Government ownership
 - Negative stigma surrounding nanotechnology
 - Nanotechnology “Patent Thicket”
 - Difficulties in policing infringement
Field of Use and Territory

- **Field of Use:**
 - Divide the market and define carefully the Field of Use to get the most out of the nanotechnology invention
 - Identify the best partner for each possible application

- **Territory:**
 - Defining the territory as world-wide is not advisable
 - Identify best partner for each geographical area
 - May be advisable to license in different territories at different times, as technology evolves
Indemnification

- Potential side effects of nanotechnology-based inventions present difficulties for both licensors and licensees

- Conventional license agreements contain limited indemnity provisions that protect the licensee in the event of a third party claim

- In a nanotechnology licensing agreement, the scope of indemnity should be broader in scope:
 - unknown health-related claims
 - environmental-related claims

- Broad scope of indemnity may require licensor to defend and hold harmless the licensee
Indemnification

- To minimize risk and liabilities, licensor may incorporate standards into the licensing agreement as evidence of best industry practices/protocols:
 - ASTM International Standards Worldwide
 - International Organization for Standardization (ISO) Technical Report
 - city ordinances (e.g., Berkeley, CA and Cambridge, MA)

- As long as licensor abides by the articulated standard, licensor may be able to protect itself against liability for unforeseen side effects

- Insurance policies
Enforcement of Nanotechnology Patent Rights

- Infringing activity on the nanoscale can be difficult to observe

- To address difficulties in policing and enforcement, a mutual cooperation provision may be included in the licensing agreement:
 - require licensor to initially disclose features of the licensed technology to the licensee
 - provide updates on critical developments, improvements, advancements and modifications of the licensed technology

- In the event of infringement, mutual cooperation provision may require that both parties participate in gathering evidence and pursuing court action against a third party
Questions and Answers

Published as a training resource and as a source of information about current developments in the law. The material contained herein is not to be construed as legal advice or opinion.