## **EUROPEAN INNOVATION DAY 2018 TOKYO (JAPAN), 15 OCTOBER 2018**

# PERSPECTIVE OF AN EUROPEAN (EX) RESEARCHER: FROM ACADEMIC EUROPE TO ACADEMIC JAPAN

Cédric RENTIER, Ph.D. cedric.rentier@gmail.com



FRANCO 1TALIENNE



JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

日本学術振興会



Tokyo University of Pharmacy and Life Sciences

#### Timeline as a researcher



06/1988

Born in Paris (France)

07/2011

M.Sc. In Organic Chemistry (France)



07/2015

• Ph.D. in Peptide Science (France & Italy)





10/2015

Post-doc in Medicinal Chemistry (Japan)



12/2017

Joined Biotage (Japan)



### Amino acids, peptides & proteins



- Proteins = large molecules made of amino acids
- Proteins are essential in living organisms

### Peptides and the amide bond



- Peptide = "small" molecule made of amino acids
- Peptide is <100
   <p>amino acids
   (Protein is >100
   amino acids)
- Amino acids linked together by amide bonds

### How are peptides synthesized?













Synthetic peptides as molecular probes for diagnostics!

### **Primary Biliary Cirrhosis**



7/41

- Autoimmune cholestatic disease of the liver
- Antimitochondrial autoantibodies (AMA) in 90-95% of patients

- Existing diagnostic methods:
  - detect AMA
  - alkaline phosphatase level
  - liver biopsy
- All of these are not convenient



### **Molecular probes using modified PDC**



#### PDC-E2(167-186):

inner lip. domain of PDC-E2 (type I β-turn)

AEIETD-X-ATIGFEVQEEGYL-KKKK



 PDC-E2 is the protein targeted by AM antibodies

 The PDC-E2 protein in vivo is modified by an exposed lipoic acid in X

- Undesired chemical modification of PDC triggers this disease?
- Several analogues with different X were synthesized









- Left: X position with no lipoic acid
- Right: X position with lipoic acid

Unlipoylated peptides have higher % positivity towards PBC sera!

De-lipoylation as an aberrant PTM involved in PBC ?





#### MD simulations with data from existing databases

- Hydrophobic interaction between lipoic acid and surrounding amino acids
- Removing the lipoic acid changes the tridimensional structure of the protein!
- De-lipoylation changes the protein and triggers an immune response?





### Myostatin & mucular growth regulation



- Myostatin: responsible for negative regulation of muscular growth
- Natural deficiencies exists (genetics)
- No myostatin = muscle hypertrophy
- Regulation of myostatin function to force muscle growth?





Muscle size increase?







Useful strategy for treatment of muscle atrophic diseases, cachexia & aging!

### The Peptide A (from previous studies)



- Peptide A: comes from mouse myostatin prodomain.
- Is able to bind to human myostatin.

Peptide A (wildtype, 23 AA)

21 43 WRQNTRYSRIEAIKIQILSKLRL-amide

**Green: Important AA for the activity** 

 $-\alpha$ -helix



Predicted 3D
helical and 2D
wheel models
show an α-helix
with MAJOR and
MINOR
hydrophobic
faces!



### Peptide A: sequence optimization



#### Myostatin inhibitory peptide A (23AA)







Peptide A:  $IC_{50} = 3.53 \pm 0.25 \mu M$ 

**↓ 11x lower!** 

Peptide 3d:  $IC_{50} = 0.32 \pm 0.05 \mu M$ 

#### In vivo effects





- After 6 weeks of treating mice with Peptide 3d (intramuscular injections at 0 and 2 weeks)...
- ... there is a noticeable increase of muscle fibers size ...
- ... and average increase in muscular mass is +20 %!

### **Peptide A: structure optimization**



- Effects of conformational lock on inhibitory potency?
- 2 parts of the peptide bound together to rigidify its structure
- « Cyclization scan »



| 3d  | XRQNTRYSRIEWIKIQIISKLRL-NH <sub>2</sub> |
|-----|-----------------------------------------|
| Cy1 | XRQNcRYCRIEWIKIQIISKLRL-NH2             |
| Cy2 | XRQNTRYcRICWIKIQIISKLRL-NH2             |
| Cy3 | XRQNTRYSRIcWICIQIISKLRL-NH2             |
| Cy4 | XRQNTRYSRIEWIKIcIICKLRL-NH2             |
| Cy5 | XRQNTRYSRIEWIKIQIIcKLCL-NH <sub>2</sub> |
| Cy6 | XRQNKRYSDIEWIKIQIISKLRL-NH <sub>2</sub> |



### Life of an EU researcher in Japan

A valuable experience: Transferable skills for future career



- ✓ Group thinking: Interests of the group before your own
- ✓ Commitment: Learn to be dedicated to an objective
- ✓ Flexibility: Adapt to a different culture

### Life of an EU researcher in Japan

- ✓ Working in Japan: an incredible opportunity
- ✓ Cultural differences: a lot to learn
- ✓ Building a successful international profile
- > The most important: Enjoy your time in Japan

Thank you for your kind attention!